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AbstmeL The effect of interlayer mupling on the magnetic propenies of layered 
antiferromagnets is studied by the use of non-linear spin-wave themy. The sublattice 
magnetization, intemal energy, specitlc heat and magnetic susceptibilities are calculated 
for different interlayer coupling strengths mer the whole range of temperatures, and 
the asymptotic expressions for these quantities are given m lw low-temperature regimes 
distinguished by a characteristic reduced temperature 00 which reflects the character 
of the layered structure. It is shown that the temperature dependences of the physical 
quantities have a aossover from three-dimensional to Wodimensional behaviour with 
increase in the reduced temperature from one regime (Q Q. Q O  < Q,) lo another 
( 8 0  Q. Q a Ql) for small interlayer mupling strengths. The correction due to spin- 
wave interactions is also discussed. 

1. Introduction 

Motivated by the discovery of almost two-dimensional (ZD) antiferromagnetism 
in the insulating phase of high-T, materials, there have been several theoretical 
studies of low-dimensional magnetism in an effort to understand the nature of the 
superconductivity [I]. Many theoretical models are based on a simple ZD square lattice 
instead of the qUaSi-ZD system in realistic materials. However, the 2D Heisenberg 
system does not achieve long-range order at finite temperatures [2]: a quasi-zD system 
can achieve it, with the interlayer coupling reducing spin fluctuations. Therefore, the  
interlayer coupling should be considered when the homogeneous ZD Heisenberg model 
is used to investigate the magnetic properties of high-Tc cuprate superconductors in 
the normal state. 

In fact, layered magnetic systems have been investigated for a long time [3], 
and the Heisenberg model is usually used to describe them. Several methods have 
been developed and many results have been obtained. Berezinsky and Blank [4] 
studied the low-temperature properties of layered magnets with a very weak interlayer 
coupling and gave the different temperature behaviours of physical quantities at low 
temperatures according to the suprressing effect of interlayer coupling on the 2D spin 
thermal excitations. Recently, the work of Singh el al [5] has also shown that the 
temperature dependence of sublattice magnetization in La2Cu0, has a crossover from 
three-dimensional (3D) behaviour to quasi-zD behaviour, and Kopietz [6] argued that 
the quasi-zo behaviour (T lnT)  of sublattice magnetization exists only in the low- 
temperature region (T << TN). Liu [7l gave an asymptotic expression for sublattice 
magnetization at low temperatures, which actually expresses the quasi-3D behaviour, 
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and that of specific heat without a linear temperature term in the pure U) me. 
Except for Kopietz who uses the Schwinger boson approach, previous workers have 
all used the hear  spin-wave theory, which is believed to be a useful method at low 
temperatures [SI. In addition, Soukoulis er al [9] also used the spin-wave theory to 
study the effect of interlayer coupling on the sublattice magnetization, internal energy 
and perpendicular susceptibility at zero temperature in a layered antiferromagnet, 
giving the relations between each of the quantities and the Niel temperature obtained 
by a douhle-timetemperature spin Green function method. 

In this paper we report a systematic study aimed at understanding the effect 
of interlayer coupling on the magnetic properties of a layered antiferromagnet by 
employing the non-linear spin-wave theory developed by Liu [lo]. Because the spin- 
wave interactions are considered in this method, the temperature regime for which 
it is suitable is much wider than that for which the linear spin-wave theory is used, 
and this method makes the perpendicular susceptibility which is a constant in the 
linear spin-wave theory dependent on temperature. We start with an anisotropic 
antiferromagnetic Heisenberg model in section 2 and then calculate numerically and 
analytically the sublattice magnetization, internal energy, specific heat and magnetic 
susceptibilities of the system as functions of temperature and interlayer coupling 
strength in section 3; finally we give our conclusion in section 4. 

G-2 Wei and A Du 

2. ElTective Hamiltonian 

Consider a 3D simple-cubic lattice system with intralayer and interlayer lattice 
parameters of a, a and c, respectively. The model Hamiltonian is given by 

where J i j  is the antiferromagnetic interaction between two nearest-neighbour spins; 
we define it by 

if i and j lie in the same layer 
if i and j lie in two nearest-neighbour layers. (2) J.. = 

v { ;L 
In order to discuss the antiferromagnetic properties of the system, we mume 

that the lattice is bipartite and divided into sublattices 1 and 2. Introducing spin 
deviation operators for the two sublattices and performing a Fourier transform on 
them as done by Liu [lo], we obtain the effective Hamiltonian in terms of spin-wave 
operators c k ( c i )  and dk(dk+): 
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where A is the exchange field and 

A = 4J(2 t 6)s (4) 

v(k) = [a (k , . )  t cos(+) t 6 ~ ( r C , c ) l / ( z  t 6) (5) 

6 = J , J J  (6) 
The last two terms in the second square brackets in equation (3) come from the 
requirement that the total Hamiltonian must be Hermitian. 

3. Calculation of physical quantities and discussion 

In a different way from Liu [lo], we define the following retarded matrix Green 
function: 

Using the technique of the equation of motion for the Green function e and 
decouphg to higher-order Green functions, under the condition of weak interlayer 
coupling and 6 = 1, we obtain 6 in terms of Fourier transforms: 

where wk is the energy of the spin wave (fi = 1) given by 

2 112 w k = A ( 1 t a ) { l - [ V ( h ) ]  } 

with 

nk = (c:ck) = ( d i d , )  

<k = (Ckdk) = (d2c:). 
(12) 

(13) 

Using the spectral theorem and equation (9) and substituting equations (12) and (13) 
into equation (11) thus results in 
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with 
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where p = l / k , T .  
The quantity C, has been calculated in [Ill, and the resul~ are 0.097 and 0.158 

for the isotropic simple-cubic (6 = 1) and pure 2D (6 = 0) cases, respectively. 
From equation (IO), we see that the renormalization factor a as a function of 
temperature and 6 (equation (14)) appears in the spin-wave energy; so we must 
first solve equation (14) in order to calculate the correlation functions and related 
physical quantities. We find that the equation for a has two roots for a given reduced 
temperature (0 < 0,) and has no solution above a certain reduced temperature 
a,, = kBTm,,/6J. e,, decreases with decreasing 6. Liu [IO] and BIoch 1121 found 
that e,, is vety close to the Nkel reduced temperature 0, for an isotropic system 
(6 = 1); however, 0, has nothing to do with the transition temperature 0, but is 
rather a consequence of some approximations [IO]. The approximation includes three 
aspects: firstly, the Hermitian conjugate relation between the spin operators S+ and 
S- is destroyed when introducing spin deviation operators; secondly, the kinematic 
interaction which demands that the spin deviation does not exceed 2 s  is not taken 
into account; thirdly there is a decoupling approximation for higher-order Green 
functions. These approximations introduce some unphysical states in the Vicinity of 
0"; so the non-linear spin-wave theory is not suitable in this temperature regime. 

In order to discuss the effect of interlayer coupling on the properties of the 
system at low temperatures (0 < 0, = (2 + 6)/3), we define a characteristic 
reduced temperature 0, = [26(2 + 6)]1/2/3 which distinguishes the quasi-ZD from 
the 3D case according to the values of 6. The 3D case holds for 0 < 0, < e,, and 
the quasi-zD case for 0, < 0 eK 0,. In the low-temperature regime, a - a, is a 
small quantity and Q may be solved by iteration. 

When 0 < 0, < e,, using the long-wavelength approximation in all directions 
of k, we obtain 

Q = a,- [(21r)2/306'/2(2+ 6)5/2(1 + a,)4](30)4 
- [ (2~)~/2256(2  + 6)'(1+ ao)y](30)8. (16) 

When 0, < 0 < e,, using the long-wavelength approximation only in the x-y 
plane of k and integrating directly [SI, we obtain 

a = a, - [4C(3)/x(2 + 6)'(1+ ~ ~ , ) ~ ] ( 3 0 ) ~  

- {48[C(3)]2/~2(2 + 1 + a 0 ) ~ } ( 3 0 ) ~  (17) 

where C(3) = 1.202 is the Riemann zeta function. 

the system. 

3.1. Sublatrice magneruarion per site 

'Ihi is given by 

With the above equations, we may calculate and discuss the physical quantities of 
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where mu is the magnetization per site at zero temperature, and the units of m and 
mu are taken as gpB: 

(C, - 1)/2 is the zero-point correction to the sublattice magnetization due to the 
zero-point quantum spin fluctuations. C, is a monotonically decreasing function of 6, 
and it is 1.393 for the pure ?D (6 = 0) case and 1.156 for the isotropic simplecubic 
(6 = 1) case [ll]; accordingly m, is a monotonically increasing function of 6. The 
numerical result for mu as a function of 6II2 for S = 4 is plotted in figure 1, which 
is in agreement with [13]. When interlayer coupling is weak, equations (lo), (14) 
and (IS) are almost the same as those of Kopietz [6] who uses the Schwinger boson 
approach within the mean-field approximation. 

m 
Fwre L Ihe sublatliae magnelizalion mg at zero 
temperature as a function of the square mor of 6 
with S =  1 

Figure 2 The sublatlice magnetization m as a 
function of reduced temperature 0 with S = $. 
nle values of 6 w m p o n d i n g  lo N N ~ S  A, B, C 
and D are 1.0, 0.5, 0.05 and O.OW5, respectively. 
The broken curves wrrespond to the mulls of 
linear spin-wave "wy 

2' 

The second term in equation (18) is the additional reduction in the sublattice 
magnetization at finite temperatures arising from spin-wave thermal excitations and 
interactions. At low temperatures (0 < el), we may treat this term in the same 
way as above; the final results for m in the two low-temperature regimes are 

m = m,, - {1/6[6(2+ 6)]'/ '(1t a0)2}(30)2 

- [(2n)'/906(2+ 6)3(1+ au)7](30)6 (0 < 0, < 0,) (20) 

m = mu - [30/n( 1 t a,,)] 
x ln{30/(1 t a")[@ t 6)]'/') - U[4C(3)/r2(2 t 6)'(1+ n o ) ' ] ( W 4  

(21) 

t 1 2 4 [ ~ ( 3 ) 1 ~ / ~ ~ ( 2  t 614(1 t au)y~(30)7n 

x In{3e@/(l+ au)[6(2 t 6 ) ] ' / ' }  (0 ,  < 0 < el) .  
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The last term in each equation is the correction due to the spin-wave interactions, and 
the second term with the temperature dependence reflects 3D behaviour in equation 
(20) and qUaSi-2D behaviour in equation (21). It is found that, in the pure ?D 
(6 = 0) case, the last two terms in equation (21) diverge logarithmically at finite 
temperatures, indicating that the antiferromagnetic Heisenberg model achieves long- 
range order only at zero temperature which is in agreement with 121. Therefore 
the interlayer coupling strength is essential to keep 3D antiferromagnetic ordering at 
finite temperatures, no matter how small it is, which is in agreement with the work of 
Huang and Manousakis 1141. Because the spin-wave interactions are considered, there 
is a renormalization factor a" appearing in the above equations. When we assume 
a, to be zero, the leading terms in equations (20) and (21) are very similar but not 
equal to the results of 1.51, for 15') neglects a factor [2/(2 + 6)]'/' in taking the long- 
wavelength approximation for the spin-wave energy ah. Kopietz 161 not only obtains 
similar formulae for the sublattice magnetization but also gives its critical behaviour 
when the temperature approaches the Nkel point. 

We also calculate the sublattice magnetization per site as a function of temperature 
and 6 for S = 4 by the numerical method over the whole range of temperatures; the 
results for several values of 6 are plotted in figure 2 Here and hereafter, the values of 
6 corresponding to curves A, B, C and D are 1.0, 0.5, 0.05 and 0.0005, respectively. In 
contrast, the results of the linear spin-wave theory are also plotted in the Same figure 
using broken curves. Curves A and B do not intersect the temperature axis, because 
the equation for 01 has no solution for 0 > em=. When 6 < 0.2, 0, < e,,,; 
thus the magnetization curves intersect the temperature axis (see curves C and D). 
From figure 2 we see that the spin-wave interaction correction to the sublattice 
magnetization becomes small as the interlayer coupling becomes weak. For given TN 
and J in 161 for Ia,CuO,, the estimated value of 6 is about 8 x 

3.2 Intemal energv and specific heat per site 

From the definition E = ( H ) / N ,  the internal energy per site may be obtained after 
a lengthy calculation: 

G-Z Wei and A Du 

E = -( SA/2)( 1 + a)'. (22) 

Similar to a, E is a function of temperature and 6. 

temperature regimes are given by 

E = E, + [(2~)'5/306~/'(2+ q3/'(l + ao)3](30)4 

At low temperatures (0 < el), the asymptotic expressions for E in the two 

+ [14a4J/2256(2+ 6)4(1 + c ~ ~ ) ~ ] ( 3 0 ) ~  (0 < 0, < 0,)  (23) 

and 

E = Eo + [4C(3)J/~(2 + &)(I  + ~ ~ o ) * ] ( 3 0 ) ~  

+ {40[C(3)]2J/~z(2+ 6)3(1 + a 0 ) ~ } ( 3 0 ) ~  (0, < 0 < 0,)(24) 

where E, is the ground-state energy: 

E, = -25S2(2 + 6)(1+ a,,)' = -2JS(2 + 6 ) [ S  + C, + CT/4SI (U) 
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which is in agreement with [15] for the isotropic simple-cubic lattice (6 = 1). When 
6 = 1, equations (16). (20) and (U) are simply the results of Liu [IO]; when 6 << 1, 
the second temperature regime 0, < 0 < 0, exists; equations (17), (21) and (24) 
reRect the low-temperature properties of the quasi-ZD system. The leading terms of 
equations (21). (23) and (24) are in agreement with [4] in which the linear spin-wave 
theory is used to study the low-temperature properties of layered magnets; however, 
the corresponding coefficients are not the same, for z = 4 is used instead of our 
z = 2 ( 2 +  6) for 6 <  1; an approximate relation a l n r  = so! - 1 (a << 1; x > 0) is 
also used so that the logarithmic form does not appear in the final formulae in [4]. 

The specific heat per site is easily obtained from C, = aE/aT. From equations 
(22) and (14), we have 

c,,,/kB = S[PA(I  + a ) ] * c ~ / ( 4 s  - APCs) (26) 

where 

In the two low-temperature regimes, asymptotic expressions for the specific heat may 
be obtained from equations (23) and (24) as follows: 

Cm/kB = [(2n)2/156”2(2+ 6)3/2(1 + au)3](30)3 

+ [56n4/2256(2+ 6)4(1 + au)8](30)7 (0, 0 < 0,)  (28) 

The last term in each equation is the correction due to the spin-wave interactions. 
From the first term in each equation, we find the dependence of the specific heat 
on the temperature crassovers from the 3D behaviour (T3)  to the quasi-zD behaviour 
(p) with increase in temperature. There is no linear term in the quasi-ZD case, 
which is in complete agreement with the experimental data [16] for La-,Ba,CuO,. 
In the pure 2D (6 = 0) case, the coefficient of the leading term in equation (29) 
is different from that in [7], because there is always a correction factor a, for the 
non-linear spin-wave theory [lo] in internal energy (specific heat) and it modifies 
the results of the linear spin-wave theory. The numerical results of the specific heat 
(S = :) for the h e a r  and non-linear spin-wave theories are plotted in figure 3. 
The correction for spin-wave interactions to the specific heat is similar to that for 
sublattice magnetization. - 



1210 G-Z Wei and A Du 

e e 

Figure 3 The specific heat C, as a bnction of 
reduced temperature 0 s = 4. ~” A, 
B, c and D and the broken c u m  have the =me 
meanings as m figure 2 

Figure 4 “he parallel susceptibility as a 
function of reduced tempemture 0 with S = 1. 
Cuiws A, B, C and D and Le broken CUN- have 
the Same meanings as in figure 2. 

3.3. Parallel and pependicular susceptibil2is per site 
Using the Kubo 117 method for the linear response function, the parallel and 
perpendicular susceptibilities of the system can be expressed as [lo] 

(30) 
2 

xII = pN CexP(pw,) [exP(pw,) - I]-’ 

xL = m/2A(1+ Q) (31) 

k 

and 

where m is the sublattice magnetization per site, and the units of xII and xL are 
(gpB)2. In the linear spin-wave approximation, we cannot obtain the perpendicular 
susceptibility in the form of equation (31); instead xL = S/2A, a function depending 
only on the interlayer coupling strength 6, and so it is necessary to take into 
account spin-wave interactions to calculate the perpendicular susceptibility of an 
antiferromagnet, although the spin-wave interaction corrections to the other physical 
quantities are small at low temperatures. 

In the WO low-temperature regimes, the asymptotic expressions for the parallel 
susceptibility are given by 

and 
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The terms can be understood as mentioned above. Similarly, xI, diverges 
logarithmically for the pure ZD (6 = 0) case; as a consequence, there is no 
antiferromagnetic long-range ordering at finite temperatures. 

The numerical results for xII and xI as functions of reduced temperature and 6 
for S = over the whole range of temperatures based on equations (30) and (31) 
are shown in figures 4 and 5, respectively. From figure 5, we find that the region 
of magnetic ordering is reduced as 6 decreases and disappears completely when 6 
equals zero. However, the perpendicular susceptibility at zero temperature is not a 
monotonic function of interlayer coupling strength; this result seems to be different 
from that in [9] but, in fact, they are in agreement with each other for 191 takes 
I = 4+ 26 (7 in 191 is equivalent to our 6) as a renormalization parameter. In the 
same way, we may give the asymptotic expressions for xI in the two low-temperature 
regimes as 

XI = [1/4J(2 + a)llmu/(l+ a”) - {1/6[6(2+ 6)1’/’(1 + 0lu)~}(30)~ 

+ [(25~)*m~/306’/~(2 + 6)’/’(l+ a0)6](30)4 

- [n~/156(2 + s)3(1+ au)*1(30)6n (0 0, < 0,) (34) 

and 

XI = [1/4J(2+ 6)1[mo/(l+ au) - [ 3 0 / ~ ( 1 +  4 ’ 1  
~ln{30/(1+~~)[6(2+6)1”’) + [4muC(3)/?r(2+6)2(1+~u)51(30)3 
- [SC(3)(30)4/?rz(2 + &)‘(I + 
x ln(3e1/’0/(1+ a,)[6(2+ 6)]’/’}n (0, K 0 0,). (35) 

In the linear spin-wave approximation, [4] gives a uniform susceptibility as a function 
of temperature and interlayer coupling strength; the results are the h e a r  combination 
of XI, and xI obtained in the linear spin-wave theory in a definite form. 

e 

Figure 5. The perpendicular susceptibility XL as a 
[unction of reduced tempernlure e with S = $. 
Culves A, B, C and D llave the same meanings as 
m figure 2. 
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4. Conclusion 

We studied the effect of interlayer coupling on the magnetic and thermodynamic 
properties of a layered Heisenberg antiferromagnet by the use of the non-linear spin- 
wave theory. Numerical results show that for a given temperature, when the ratio 6 
of interlayer coupling strength to inmalayer coupling strength ( J L / J )  increases, the 
sublattice magnetization increases, but the specific heat and parallel susceptibility 
decrease. The dependence of the perpendicular susceptibility on the interlayer 
coupling strength is not a monotonic relation, and it is necessary to take into account 
the spin-wave interactions to make the perpendicular susceptibility depend on the 
temperature. 

At low temperatures (T B: T, = 2 J ( 2 + 6 ) / k B ) ,  we have defined a characteristic 
temperature Tu = 2J[26(2 + 8)]I /*/kB which distinguishes the quasi-m from the 
qUaSi-3D case according to the values of 6, given the asymptotic expressions for 
sublattice magnetization, internal energy, specific heat, parallel and perpendicular 
susceptibilities in two low-temperature regimes T < 7'' < Ti and To B: T < Ti. 
The behaviours with temperature of these physical quantities at low temperatures 
are in agreement with that of the 3D system for T < T, < TI. However, for 
Tu < T < Ti, the behaviours with T and 6 for the sublattice magnetization, parallel 
and perpendicular susceptibilities are in the forms of -T In T and - In 6; thus they 
diverge logarithmically when 6 = 0 at finite temperatures. There is no linear term 
in T in the expressions for specific heat at low temperatures, which is in agreement 
with experimental data. 
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